Projects 14124-14131,14156-14157,14173,14176-14178,14191,14310,14320,16920-16923,16929-16934

Cause: cancer

These simulations are designed to test our understanding the folding mechanism of alpha-helical hairpins. We are trying to study how disulfide cross-linkers and sequence variants affect the folding thermodynamics and kinetics of these proteins, to learn how we might better use molecular simulation methods to design effective protein binder scaffolds, for use as "affibody" cancer therapeutics, for example.

List of Contributors

This project is managed by Prof. Vincent Voelz at Temple University.

Dr. Voelz's research focuses on using new simulation methods to unravel the mysteries of how proteins self-assemble into their functional folds, and to design folding and binding properties of proteins and peptide mimetics from first principles. The Voelz Lab participates in the Folding@home project, hosting two servers at Temple University. Dr. Voelz was formerly a postdoctoral scholar in the Vijay Pande lab at Stanford University.

Enter the project number: